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MOTIVATION	  AND	  STATUS	  
How	  much	  room	  for	  νs	  in	  the	  Early	  Universe?	  	  



Probing	  new	  light	  par9cles	  with	  
cosmology	  

•  Effec9ve	  number	  of	  rela9vis9c	  species:	  
–  in	  units	  of	  neutrinos:	  	  

– Neutrino	  energy	  density	  

•  Standard	  Model:	  	  Neff	  =	  3.046	  	  
•  Beyond	  the	  SM:	  dark	  radia(on	  	  
– ΔNeff	  =	  Neff	  -‐	  3.046	  
–  	  generally	  9me	  dependent,	  non-‐integer	  

I. INTRODUCTION

Neutrinos are unique among the known elementary particles in that their properties have

often been first, and in general more, constrained by astrophysical and cosmological limits than

by direct laboratory measurements. Already in the 1970s cosmological probes gave, first, a

constraint on the neutrino mass based on estimates of the density of nonrelativistic matter in the

Universe [1], and then a constraint on the number of light neutrino species based on estimates of

primordial helium production during big bang nucleosynthesis (BBN) [2–4]. Today, both of these

probes have reached impressive sensitivity, and have started yielding some tantalizing suggestions

of the possibility that extra neutrinos may be present in nature.

The radiation abundance in neutrinos and beyond-standard-model relativistic species is usu-

ally expressed as the e↵ective number of relativistic species,

N
e↵

=
⇢
rel

� ⇢
�

⇢th
⌫

, (1)

where ⇢th
⌫

= (7⇡2/120)(4/11)4/3T 4

�

is the energy density of one standard-model massless neutrino

with a thermal distribution, ⇢
�

is the energy density of photons, and ⇢
rel

is total energy density in

relativistic particles. In the standard model, by the time of BBN only the three known neutrino

species contribute to ⇢
rel

, resulting in N
e↵

= 3.046 [5]. This is slightly larger than three due to

reheating via e+e� annihilation.

Extra radiation beyond the standard model (the so-called “dark” radiation), would cause an

excess (which we label �N
e↵

) above the standard model value of N
e↵

. Although adding an

extra light fermion could contribute �N
e↵

= 1, most generally N
e↵

is noninteger and varies with

time, and depends on the physics at play. Specifically, lepton asymmetries [6–8], particle decay

[9–11], partial thermalization of new fermions [12–14], the e↵ect of a new MeV-scale particle on

the active neutrino temperature [15, 16], nonthermal production of dark matter [17], and heavy

sterile neutrinos can all lead to contributions to N
e↵

that are not integer and/or change with

time. Therefore we can hope that probing �N
e↵

precisely at di↵erent epochs – namely, during

BBN and at the formation of the CMB – could discriminate between di↵erent models.

Recent measurements of N
e↵

have hinted at a value of N
e↵

> 3.046 (�N
e↵

> 0). Constraints

on N
e↵

can be derived from measurements of the primordial 4He mass fraction, Y
p

⌘ 4nHe4
nn+np

, at

BBN, T ⇠ 0.2 MeV. Izotov and Thuan [18] find Y
p

= 0.2565 ± 0.0010(stat.)±0.0050(syst.),

giving NBBN

e↵

= 3.68+0.80

�0.70

or NBBN

e↵

= 3.80+0.80

�0.70

, each at 2�, depending on the choice of the neutron
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•  Big	  Bang	  Nucleosynthesis	  (BBN)	  
– T	  ≈	  0.2	  MeV	  
– New,	  higher	  4He	  mass	  frac9on:	  
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lifetime, and assuming no lepton asymmetry. These are both more than 1� from the standard

model value. Other recent estimates of Y
p

[19, 20] and various analyses of N
e↵

at BBN, e.g. [21–

23], give for the most part central values more than 1� above 3.

CMB measurements constrain the neutrino energy density in two ways. First, a measurement

of the damping tail of the angular power spectrum on small scales (large l) is a probe of the energy

density in light neutrinos which can free stream during structure formation. Next, measurements

of the angular power spectrum at larger scales near the Doppler peak can be used to constrain

the redshift of matter-radiation equality. With independent measurements of the total matter

abundance, this can also constrain the radiation abundance at the time of matter-radiation

equality. Planck reports a value of NCMB

e↵

= 3.30±0.27, consistent with the standard model at the

1� level [24]. The South Pole Telescope suggests a somewhat high value, NCMB

e↵

= 3.71±0.35 [25].

WMAP 9 also reports a value around 2� higher than the standard model value, NCMB

e↵

= 3.84±0.4

[26]. In contrast with this, the Atacama Cosmology Telescope (ACT) finds a significantly smaller

value, NCMB

e↵

= 2.78 ± 0.55 when using CMB data alone, although this value shifts to NCMB

e↵

=

3.52± 0.39 when baryon acoustic oscillation and Hubble parameter measurements are included

[27].

Interestingly, bounds from terrestrial searches for new physics on the masses and couplings of

new particles invariably result in constraints on their contribution to the cosmological radiation,

providing indirect constraints on �N
e↵

. Of particular interest are the recent hints of a fourth,

sterile neutrino species from reactor neutrino experiments [28, 29], calibration data from gallium-

based solar neutrino detectors [30–32], and the Short Baseline (SBL) neutrino beam experiments

LSND [33] and MiniBooNE [34–37] which search for ⌫̄
µ

! ⌫̄
e

and ⌫
µ

! ⌫
e

oscillations. All these

generally support the existence of at least one sterile neutrino with mass ⇠ 0.1 – 1 eV. This

neutrino would be populated in the early Universe via an interplay of oscillations and scattering,

thus increasing N
e↵

.

Although the possibility of extra radiation due to sterile neutrinos seems to be substantiated

at the general level, detailed analyses of the data reveal tensions between data sets and leave

open the question of what scenario is most favored overall. MiniBooNE observes a di↵erence

between the muon neutrino and antineutrino disappearance rates, hinting at CP violating e↵ects.

The latest measurements by MiniBooNE show less tension between their neutrino/antineutrino

results, although the 3 + 2 scenario still provides a better fit to the data [37]. The simplest
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•  Cosmic	  Microwave	  Background	  (CMB)	  
–  	  macer-‐radia9on	  equality,	  Teq≈	  0.79	  eV	  	  

Planck	  

SPT	  

WMAP9	  

ACT	  
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Figure 5: 68% and 95% c.l. 2D marginalized posterior in the plane Neff − Yhe.

consistency narrow the posterior and reduce the error on Neff. However H0 moves the best-fit of Neff

toward a higher value of the number of effective relativistic degrees of freedom, while BBN consistency
prefers a lower value and brings back Neff closer to the standard value. In subsequent analyses we
will follow a conservative approach, applying the BBN consistency relation in all our MCMC analyses,
accordingly also with Planck team strategy.

0.3.2 Constraints on Neff and
∑

mν: massive neutrinos

The constraints on massive neutrinos are summarized in Table 3.
We also marginalize over the lensing amplitude and we study this effect in Figure 7 and in Figure 8

for our basic data set (Planck+WP+highL). As we already discussed in Section 0.2.2 Planck analysis
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There	  is	  room	  for	  νs	  	  

•  Neff	  >	  3	  is	  allowed,	  or	  even	  favored	  
– Depending	  on	  details	  of	  analysis	  
– Neff	  =	  4	  probably	  allowed,	  Neff=5	  probably	  
excluded	  



Oscilla9on	  searches	  for	  νs	  	  

•  LSND,	  MiniBooNE	  :	  claim	  of	  νμ	  à	  νe	  appearance	  
– Effec9ve	  angle:	  
– Tension	  with	  nega9ve	  results:	  Icarus,	  Karmen,	  
E776,	  Nomad	  

– Tension	  between	  νe	  and	  	  an9-‐νe	  MiniBooNE	  data	  
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Figure 5. Constraints in the plane of |Uµ4|2 and |U⌧4|2 for three fixed values of �m2

41

from MINOS

CC + NC data (green), atmospheric neutrinos (orange), CDHS + MiniBooNE
(–)

⌫ µ disappearance +
LBL reactors (red), and the combination of those data (blue). The constraint from solar neutrinos is
shown in magenta. Regions are shown at 90% and 99% CL (2 dof) with respect to the �2 minimum
at the fixed �m2

41

. We minimize with respect to complex phases and include e↵ects of ✓
13

and ✓
14

where relevant. The gray region is excluded by the unitarity requirement |Uµ4|2 + |U⌧4|2  1. Note
the di↵erent scale on the axes.

as MINOS data, thanks to the NC matter e↵ect and SNO NC data. No relevant limit can
be set on |U

µ4

|2 from solar neutrinos.

5 ⌫
µ

! ⌫
e

and ⌫̄
µ

! ⌫̄
e

appearance searches

Now we move on to the discussion of appearance searches. In contrast to disappearance
experiments which probe only one row of the mixing matrix, i.e., only the elements |U

↵i

|
for fixed ↵, an appearance experiment in the channel

(–)

⌫
↵

!
(–)

⌫
�

is sensitive to two rows via
combinations like |U

↵i

U
�i

| and potentially to some complex phases. In the SBL approxi-
mation the 3+1 appearance probability in the phenomenologically most relevant channel
(–)

⌫
µ

!
(–)

⌫
e

takes the form

P SBL,3+1

(–)

⌫ µ!
(–)

⌫ e

= 4|U
µ4

U
e4

|2 sin2 �m2

41

L

4E
= sin2 2✓

µe

sin2
�m2

41

L

4E
, (5.1)

where we have defined an e↵ective mixing angle by

sin2 2✓
µe

⌘ 4|U
µ4

U
e4

|2 . (5.2)

In the parametrization from Eq. (2.6) we obtain sin 2✓
µe

= sin ✓
24

sin 2✓
14

. The oscillation
probability in the 3+2 scheme is given in Eq. (2.1). The 3+1 SBL appearance probability
does not depend on complex phases, whereas in the 3+2 scheme CP violation via complex
phases is possible at SBL [33, 60].

Our analyses of LSND [12], KARMEN [118], NOMAD [119]
(–)

⌫
µ

!
(–)

⌫
e

appearance
data are based on [33, 79, 120], where references and technical details can be found. Our
analyses of E776 [40] and ICARUS [41], used for the first time in the present paper, are
described in appendices E.2 and E.3, respectively.6 In the case of LSND, we use only the

6Recently also the OPERA experiment presented results from a ⌫µ ! ⌫e appearance search [121]. The
obtained limit is comparable to the one from ICARUS [41].
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lous background processes. The neutrino mode running
also shows an excess of 162.0±47.8 events (3.4�), but the
energy distribution of the excess is marginally compatible
with a simple two neutrino oscillation formalism. While
this incompatibility might be explained by unexpected
systematic uncertainties and backgrounds, expanded os-
cillation models with several sterile neutrinos can reduce
the discrepancy by allowing for CP violating e↵ects. On
the other hand, global fits [12] with these expanded mod-
els show some incompatibility with the current upper lim-
its on electron and muon neutrino disappearance that will
need new data and studies to resolve.
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Other	  hints	  of	  νs	  

•  Reactor	  anomaly	  
–  an9-‐νe	  disappearance	  

•  Gallium	  anomaly	  
–  νe	  disappearance	  
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Figure 8. Results of the global fit in the 3+1 scenario, shown as exclusion limits and allowed regions
for the e↵ective mixing angle sin2 2✓µe = 4|Ue4|2|Uµ4|2 and the mass squared di↵erence �m2

41

. Left:
Comparison of the parameter region preferred by appearance data (LSND, MiniBooNE appearance
analysis, NOMAD, KARMEN, ICARUS, E776) to the exclusion limit from disappearance data
(atmospheric, solar, reactors, Gallium, CDHS, MINOS, MiniBooNE disappearance, KARMEN and
LSND ⌫e–12C scattering). Right: Regions preferred by experiments reporting a signal for sterile
neutrinos (LSND, MiniBooNE, SBL reactors, Gallium) versus the constraints from all other data,
shown separately for disappearance and appearance experiments, as well as their combination.

6 Combined analysis of global data

We now address the question whether the hints for sterile neutrino oscillations discussed
above can be reconciled with each other as well as with all existing bounds within a com-
mon sterile oscillation framework. In section 6.1 we discuss the 3+1 scenario, whereas in
section 6.2 we investigate the 3+2 and 1+3+1 schemes.

6.1 3+1 global analysis

In the 3+1 scheme, SBL oscillations are described by e↵ective 2-flavor oscillation prob-
abilities, involving e↵ective mixing angles for each oscillation channel. The expressions
for the e↵ective angles ✓

ee

, ✓
µµ

, ✓
µe

governing the
(–)

⌫
e

disappearance,
(–)

⌫
µ

disappearance,

and
(–)

⌫
µ

!
(–)

⌫
e

appearance probabilities are given in Eqs. (3.2), (4.2), (5.2), respectively.
From those definitions it is obvious that the three relevant oscillation amplitudes are not
independent, since they depend only on two independent fundamental parameters, namely
|U

e4

| and |U
µ4

|. Neglecting terms of order |U
↵4

|4 (↵ = e, µ) one finds

sin2 2✓
µe

⇡ 4 sin2 2✓
ee

sin2 2✓
µµ

. (6.1)

Hence, the appearance amplitude relevant for the LSND/MiniBooNE signals is quadrati-
cally suppressed by the disappearance amplitudes, which both are constrained to be small.
This leads to the well-known tension between appearance signals and disappearance data
in the 3+1 scheme, see e.g. [29, 30] for early references.
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How	  many	  light	  νs?	  	  

•  3	  +	  1	  (1	  sterile)	  
– Minimal	  model,	  fits	  well	  MB	  ν	  and	  MB	  an9-‐ν	  data	  
separately	  

– Poor	  fit	  of	  MB	  ν	  and	  MB	  an9-‐ν	  data	  combined	  

•  3	  +2	  (2	  sterile)	  
– Allows	  CP	  viola9on	  
– Favored	  by	  MB	  ν	  and	  MB	  an9-‐ν	  data	  combined	  



3	  +	  2	   1+	  3	  +	  1	  



�m2

41

[eV2] |U
e4

| |U
µ4

| �m2

51

[eV2] |U
e5

| |U
µ5

| �
µe

3+1 0.93 0.15 0.17
3+2 0.47 0.13 0.15 0.87 0.14 0.13 �0.15⇡

1+3+1 �0.87 0.15 0.13 0.47 0.13 0.17 0.06⇡

Table 8. Parameter values at the global best fit points for the 3+1, 3+2, and 1+3+1 mass schemes.
�µe is the complex phase relevant for SBL appearance experiments as defined in Eq. (2.2).
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Figure 9. Allowed regions in the plane of |�m2

41
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| in 3+2 (upper-left part) and 1+3+1
(lower-right part) mass schemes. We minimize over all mixing angles and phases. We show the
regions for appearance data (light blue) and disappearance data (light green) at 95% CL (2 dof),
and global data (dark and light red) at 95% and 99% CL (2 dof).

data. We find no overlap region at 99% CL. Hence, an explanation of all anomalies within
the 3+1 scheme is in strong tension with constraints from various null-result experiments.

6.2 3+2 and 1+3+1 global analyses

Now we move to the global analysis within a two-sterile neutrino scenario in order to
investigate whether the additional freedom allows to mitigate the tension in the fit. We
give �2 and PG values for the 3+2 and 1+3+1 schemes in Tab. 7 and the corresponding
values of the parameters in Tab. 8. We observe from the PG values that the tension between
appearance and disappearance data remains severe, especially for the 3+2 case, with a PG
value below 10�4, even less than for 3+1. For 1+3+1 consistency at the 2 per mille level
can be achieved.

Let us first discuss the 3+2 fit. We find a modest improvement of the total �2 in the
global fit compared to 3+1 by

�2

3+1,glob

� �2

3+2,glob

= 10.7 . (6.3)
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Figure 10. Allowed regions for 3+2 in the plane of |Ue4Uµ4| vs. |Ue5Uµ5| for fixed values of �m2

41

and �m2

51

at 90% and 99% CL (2 dof). We minimize over all undisplayed mixing parameters. We
show the regions for appearance data (blue), disappearance data (green), and the global data (red).

Evaluated for 4 additional parameters relevant for SBL data in 3+2 compared to 3+1 this
corresponds to 96.9% CL.

The origin of the very low parameter goodness of fit can be understood by looking at
the contributions of appearance and disappearance data to �2

PG

. Tab. 7 shows that the
�2 of appearance data at the global best fit point, �2

app,glob

, changes only by about 3 units
between 3+1 and 3+2. However, if appearance data is fitted alone, an improvement of
15.2 units in �2 is obtained when going from 3+1 to 3+2, see Eq. (5.3). The fact that
appearance data by themselves are fitted much better in 3+2 than in 3+1 leads to the large
value of �2

PG

= 25.8, with a contribution of 19.7 from appearance data. In other words: the
fit to appearance data at the global 3+2 best fit point (�2

app,glob

= 92.4/68, p-value 2.6%)
is much worse than at the appearance-only 3+2 best fit point (�2

min,app

/dof = 72.7/63,
p-value 19%). This interpretation is also supported by Fig. 6, showing an equally bad fit
to MiniBooNE neutrino data at the 3+1 and 3+2 global best fit points (black solid and
red solid histograms, respectively).

We further investigate the origin of the tension in the 3+2 fit in Figs. 9 and 10. In
Fig. 9 we show the allowed regions in the multi-dimensional parameter space projected
onto the plane of the two mass-squared di↵erences for appearance and disappearance data
separately, as well as the combined region. The 3+2 global best fit point happens close to
an overlap region of appearance and disappearance data at 95% CL in that plot. However,
an overlap in the projection does not imply that the multi-dimensional regions overlap. In
the left panel of Fig. 10 we fix the mass-squared di↵erences to values close to the global
3+2 best fit point and show allowed regions in the plane of |U

e4

U
µ4

| and |U
e5

U
µ5

|. These
are the 5-neutrino analogs to the 4-neutrino SBL amplitude sin 2✓

µe

. Similar as in the 3+1
case we observe a tension between appearance and disappearance data, with no overlap
at 99% CL. This explains the small PG probability at the 3+2 best fit point. The right
panel of Fig. 10 corresponds to the local minimum of the combined fit visible in Fig. 9
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Contribu9on	  of	  νs	  to	  Neff	  

•  Produc9on:	  interplay	  of	  
oscilla9ons	  and	  collision	  
–  “thermaliza9on	  line”	  :	  
produc9on	  rate	  ≈	  
Hubble	  rate	  

•  3	  +	  1	  :	  νs	  thermalized	  
–  Neff	  =	  4	  
–  Constrained	  by	  
cosmological	  mass	  
bound	  
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3+2	  :	  richer	  phenomenology	  

•  Incomplete	  thermaliza9on	  
–  	  important	  to	  assess	  tension	  between	  SBL	  and	  
dark	  radia9on	  bounds	  

– Lessens	  tension	  with	  cosmological	  mass	  bound	  

•  At	  least	  1	  mildly	  rela9vis9c	  at	  Teq	  
– Suppressed	  contribu9on	  to	  NCMB

eff	  

T.	  Jacques,	  L.	  Krauss,	  C.L.,	  Phys.	  Rev.	  D	  87,	  083515,	  arXiv:1301.3119	  
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CONTRIBUTION	  TO	  RADIATION	  
DENSITY:	  SUPPRESSION	  EFFECTS	  

Par9al	  thermaliza9on	  
Mass	  correc9on	  



PARTIAL	  THERMALIZATION	  



Growing	  a	  νs	  popula9on	  

•  Quantum	  measurement	  
– Collisions	  break	  the	  coherence	  of	  the	  wavepackets	  
– νs	  	  can	  accumulate	  and	  reach	  thermal	  abundance	  	  

Kainulainen,	  PLB244,	  	  2,	  1990	  p.	  191
	   	  	  



Neutrino	  scacering	  

•  Coherent	  :	  oscilla9ons	  
•  Zero	  lepton	  asymmetry	  

	  
•  Incoherent:	  collisions	  
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As expected, a sterile species is more populated at the time of BBN if oscillations are more

e�cient, i.e. for larger mixing (larger oscillation amplitude) and larger mass squared splitting
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|).
Let us now discuss the numerical solution. We follow the technique from Melchiorri et al.

[13], numerically evolving the neutrino densities from temperatures of 100 MeV down to 1 MeV.
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Before discussing the full numerical solution of Eq. (3), we start with an approximate analytical

solution for guidance in understanding the physics. Briefly (see the Appendix for more details),

the problem can be approximately reduced to two independent equations, each describing the

population of one of the sterile species. For each sterile neutrino, (we use ⌫
s

as an example in the

following expressions), one can approximately use two independent oscillation channels, ⌫
e

! ⌫
s

5

real.

In the density matrix formalism the di↵erential equations governing evolution of the neutrino

density are

⇢̇ = H⇢� ⇢H† = �i[H
m

+ V
e↵

, ⇢]� {�
2
, (⇢� ⇢

eq

)}, (2)

where ⇢ is the 5⇥5 neutrino density matrix in the flavor basis with diagonal entries corresponding

to physical densities, H is the full Hamiltonian, H
m

= U H
0

U † is a rotation of the free neutrino

Hamiltonian in the mass basis H
0

= diag(E
1

, E
2

, E
3

, E
4

, E
5

), and ⇢
eq

is the density matrix at

thermal equilibrium, ⇢
eq

= I
�
1/

�
1 + eE/T

��
. Equation (2) can be expressed as

✓
@⇢

@T

◆

E
T

= � 1

HT

✓
�i[H

m

+ V
e↵

, ⇢]� {�
2
, (⇢� ⇢

eq

)}
◆
, (3)

using the approximation Ṫ ' HT , where H =
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Because of the thermal refraction potential, the e↵ective, two-neutrino oscillation amplitude

is suppressed — for both neutrinos and antineutrinos — as follows (see, e.g., [56]):
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The expression (A5) is valid for a CP-symmetric neutrino gas; the more complicated case with

a lepton asymmetry will not be discussed here.

2. Flavor evolution equation and its solution

Let us now consider the production of the sterile neutrino ⌫
s

, using an e↵ective two-neutrino

system, ⌫
↵
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s

with the oscillation frequency and amplitude as outlined above. Let f
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and f
↵

be the phase space distributions of ⌫
s

and of one of the active species, and let p be the neutrino

momentum. We start with the evolution equation (see e.g., Foot and Volkas [56] and Dodelson

and Widrow [57])
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with �
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being the collision rate, Eq. (5). Equation (A6) is valid when the neutrino oscillation

length is much shorter that the neutrino mean-free path, so that the e↵ect of oscillations between

two collisions is described by the averaged in-medium oscillation probability hP i = sin2 2✓
m

/2.

We have verified that this is always the case for our parameters of interest.3 We take f
↵

= f
↵

(p/T )

to be a Fermi-Dirac distribution, but the derivation in this section holds for any function of p/T .

Equation (A6) can be simplified using [57]
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3 The hierarchy between the oscillation length and the mean free path is weak for T >⇠ 30 MeV, and so one may

doubt the accuracy of our equation. In Ref. [56] a more sophisticated equation is given, that does not rely

on the hierarchy of lengths. We have checked numerically that this equation and Eq. (A6) give very similar

results. Therefore, we consider Eq. (A6) for the sake of simplicity.
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3 The hierarchy between the oscillation length and the mean free path is weak for T >⇠ 30 MeV, and so one may

doubt the accuracy of our equation. In Ref. [56] a more sophisticated equation is given, that does not rely

on the hierarchy of lengths. We have checked numerically that this equation and Eq. (A6) give very similar

results. Therefore, we consider Eq. (A6) for the sake of simplicity.
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= 3.6, y
µ,⌧
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Before discussing the full numerical solution of Eq. (3), we start with an approximate analytical

solution for guidance in understanding the physics. Briefly (see the Appendix for more details),

the problem can be approximately reduced to two independent equations, each describing the

population of one of the sterile species. For each sterile neutrino, (we use ⌫
s

as an example in the

following expressions), one can approximately use two independent oscillation channels, ⌫
e

! ⌫
s
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•  Assume:	  
– νs	  mixed	  with	  νμ	  and	  νe	  	  
– g*	  constant,	  fα	  constant,	  bα<<1	  at	  freeze-‐out	  

•  Result:	  	  

	  
–  fs/fα	  momentum-‐independent	  
– generalized	  to	  3+2	  (if	  2	  steriles	  don’t	  mix)	  

f
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h
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A similar formula holds for the abundance of ⌫
r

, upon replacement of index: 4 ! 5. Note that

the result in Eq. (A12) can be rewritten in terms of a single, e↵ective, ⌫
e

� ⌫
s

system, with

mixing angle sin2 2✓
e↵

= 4(U2

e4

+ 1.29U2

µ4

).

We find that our analytic solution, Eq. (A12), gives results around 10% lower than our numeric

solution at points 1,2, and 3 in Table I. The main source of this discrepancy is g⇤, which is kept

fixed in the analytic solution, while its full temperature dependence is included in our numeric

results. When g⇤ is kept fixed in both calculations, results match to within 5%.
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Numerical	  solu9on	  for	  3+2	  

– Monochroma9c	  approxima9on	  
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Results:	  ΔNBBN
eff	  
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ΔNBBN
eff	  	  for	  3+2	  

Point 1 Points 2,3

Point 1

Point 2

Point 3

5 10 15 20 25 30 35 400.0

0.2

0.4

0.6

0.8

1.0

T @MeVD

rn
req

U
e4

U
µ4

U
e5

U
µ5

m
4

m
5

�N
e↵

�N
e↵

P
me↵

⌫s

(eV) (eV) (BBN) (z
eq

) (eV)

Pt. 1 0.055 0.034 0.13 0.13 0.6 0.9 1.86 1.68 1.31

Pt. 2 0.040 0.025 0.17 0.17 0.6 0.9 1.63 1.47 1.18

Pt. 3 0.030 0.016 0.17 0.17 0.6 0.9 1.40 1.25 1.05

TABLE I: Mass, mixing parameters, results for �N
e↵

at BBN and z
eq

, and e↵ective mass sum for

the three sample points discussed in the text. The derivation of the final three columns is discussed in

Secs. II and III.
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FIG. 1: Sterile neutrino density evolution as a fraction of the thermal density ⇢
eq

, for the masses and

mixing angles listed in Table I. Dashed lines are for ⌫
s

, solid lines are for ⌫
r

.

constraint on the sum of the neutrino masses,

X
m

⌫

= 94eV(⌦
⌫,m

h2), (11)

where ⌦ is the density as a fraction of the critical density of the Universe, ⌦ = ⇢/⇢
c

, and

⌦
⌫,m

is the neutrino contribution to the matter abundance ⌦
m

. It is important to note that in

Eq. (11) it is assumed that each species is fully thermalized, by assuming that for each species,

⇢non�rel
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= m
⌫

nth

⌫

, with nth

⌫

from Eq. (14). Constraints on the sterile neutrino mass are really

constraints on the product m
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⌫

, and if a sterile neutrino does not undergo full thermalization,

then it contributes m
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= m
⌫
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n

th
⌫
to constraints on

P
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. For the partially thermalized m
⌫

= 0.6

eV neutrino we consider in Table I, the phase space distribution is approximately a scaled Fermi-

Dirac distribution as shown in the Appendix, and n⌫

n

th
⌫
= �NCMB

e↵

. In Table I we show the e↵ective
P

m
⌫

for the three points we consider.
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•  Scan	  of	  allowed	  region	  from	  Giun9	  and	  Laveder,	  2011	  
•  Shown:	  	  points	  allowed	  within	  2σ,	  giving	  minimum	  Neff	  



Summary:	  νs	  at	  BBN	  	  

•  3	  +	  1	  predicts	  NBBN
eff	  =	  4	  	  

–  in	  absence	  of	  lepton	  asymmetry	  
– Tension	  with	  cosmology?	  	  

•  3+2	  predicts	  NBBN
eff	  ~	  4.4	  –	  5	  

– Tension	  with	  cosmology	  



MASS	  SUPPRESSION	  



CMB:	  	  mildly	  rela9vis9c	  νs	  

•  Neutrino	  “temperature”	  at	  macer/radia9on	  
equality:	  Tν≈0.55	  eV	  	  
– Comparable	  with	  m4	  ~	  eV	  	  

•  Contribu9on	  to	  NCMB
eff	  through	  pressure	  

density	  
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•  3+1	  :	  iscontours	  of	  ΔNCMB
eff	  
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Figure 8. Results of the global fit in the 3+1 scenario, shown as exclusion limits and allowed regions
for the e↵ective mixing angle sin2 2✓µe = 4|Ue4|2|Uµ4|2 and the mass squared di↵erence �m2

41

. Left:
Comparison of the parameter region preferred by appearance data (LSND, MiniBooNE appearance
analysis, NOMAD, KARMEN, ICARUS, E776) to the exclusion limit from disappearance data
(atmospheric, solar, reactors, Gallium, CDHS, MINOS, MiniBooNE disappearance, KARMEN and
LSND ⌫e–12C scattering). Right: Regions preferred by experiments reporting a signal for sterile
neutrinos (LSND, MiniBooNE, SBL reactors, Gallium) versus the constraints from all other data,
shown separately for disappearance and appearance experiments, as well as their combination.

6 Combined analysis of global data

We now address the question whether the hints for sterile neutrino oscillations discussed
above can be reconciled with each other as well as with all existing bounds within a com-
mon sterile oscillation framework. In section 6.1 we discuss the 3+1 scenario, whereas in
section 6.2 we investigate the 3+2 and 1+3+1 schemes.

6.1 3+1 global analysis

In the 3+1 scheme, SBL oscillations are described by e↵ective 2-flavor oscillation prob-
abilities, involving e↵ective mixing angles for each oscillation channel. The expressions
for the e↵ective angles ✓

ee

, ✓
µµ

, ✓
µe

governing the
(–)

⌫
e

disappearance,
(–)

⌫
µ

disappearance,

and
(–)

⌫
µ

!
(–)

⌫
e

appearance probabilities are given in Eqs. (3.2), (4.2), (5.2), respectively.
From those definitions it is obvious that the three relevant oscillation amplitudes are not
independent, since they depend only on two independent fundamental parameters, namely
|U

e4

| and |U
µ4

|. Neglecting terms of order |U
↵4

|4 (↵ = e, µ) one finds

sin2 2✓
µe

⇡ 4 sin2 2✓
ee

sin2 2✓
µµ

. (6.1)

Hence, the appearance amplitude relevant for the LSND/MiniBooNE signals is quadrati-
cally suppressed by the disappearance amplitudes, which both are constrained to be small.
This leads to the well-known tension between appearance signals and disappearance data
in the 3+1 scheme, see e.g. [29, 30] for early references.
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νs	  and	  cosmological	  mass	  limit	  

•  Constrained	  quan9ty:	  
	  	  	  	  	  	  
	  	  	  	  	  	  	  	  Σ	  =	  m1	  +	  m2	  +	  m3	  +	  m4×	  ΔNBBN

eff	  
	  

– From	  CMB	  measurement	  of	  Ωm,ν	  

•  Bound	  (WMAP9):	  Σ	  <	  0.7	  eV	  
–  Incomplete	  thermaliza9on	  lessens	  conflict	  	  



3+2	  summary	  

U
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m
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P
me↵

⌫s

(eV) (eV) (BBN) (z
eq

) (eV)

Pt. 1 0.055 0.034 0.13 0.13 0.6 0.9 1.86 1.68 1.31

Pt. 2 0.040 0.025 0.17 0.17 0.6 0.9 1.63 1.47 1.18

Pt. 3 0.030 0.016 0.17 0.17 0.6 0.9 1.40 1.25 1.05

TABLE I: Mass, mixing parameters, results for �N
e↵

at BBN and z
eq

, and e↵ective mass sum for

the three sample points discussed in the text. The derivation of the final three columns is discussed in

Secs. II and III.
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FIG. 1: Sterile neutrino density evolution as a fraction of the thermal density ⇢
eq

, for the masses and

mixing angles listed in Table I. Dashed lines are for ⌫
s

, solid lines are for ⌫
r

.

constraint on the sum of the neutrino masses,

X
m

⌫

= 94eV(⌦
⌫,m

h2), (11)

where ⌦ is the density as a fraction of the critical density of the Universe, ⌦ = ⇢/⇢
c

, and

⌦
⌫,m

is the neutrino contribution to the matter abundance ⌦
m

. It is important to note that in

Eq. (11) it is assumed that each species is fully thermalized, by assuming that for each species,

⇢non�rel

⌫

= m
⌫

nth

⌫

, with nth

⌫

from Eq. (14). Constraints on the sterile neutrino mass are really

constraints on the product m
⌫

n
⌫

, and if a sterile neutrino does not undergo full thermalization,

then it contributes m
e↵

= m
⌫

n⌫

n

th
⌫
to constraints on

P
m

⌫

. For the partially thermalized m
⌫

= 0.6

eV neutrino we consider in Table I, the phase space distribution is approximately a scaled Fermi-

Dirac distribution as shown in the Appendix, and n⌫

n

th
⌫
= �NCMB

e↵

. In Table I we show the e↵ective
P

m
⌫

for the three points we consider.
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DISCUSSION	  



Sterile	  neutrino(s)	  contribu9on	  to	  Neff	  

•  May	  be	  not	  integer	  
–  Incomplete	  thermaliza9on	  

•  May	  be	  different	  for	  BBN	  and	  CMB	  
– Mass	  suppression	  
– Signature	  of	  eV	  scale	  νs	  	  



SBL-‐mo9vated	  sterile	  neutrinos	  

•  3	  +	  1	  :	  	  NBBN
eff	  =	  4	  	  

– Uncertain	  compa9bility	  with	  dark	  radia9on	  
constraints	  

– Some	  tension	  with	  cosmological	  mass	  bound	  

•  3+	  2	  :	  NBBN
eff	  	  ≥	  4.4	  (or	  so)	  	  

– Up	  to	  one	  par9ally	  populated	  	  
–  tension	  with	  dark	  radia9on	  bounds	  
– Conflict	  with	  cosmological	  mass	  bound	  



Next	  steps	  

•  SBL	  experiments:	  open	  ques9ons	  on	  
systema9cs	  

•  Ab-‐ini9o	  analyses	  desirable	  
•  towards	  global	  analyses:	  all	  cosmological	  data	  
+	  all	  terrestrial	  data	  
– Possible?	  Meaningful?	  


